A surface plasmon resonance sensor for Mycobacterium tuberculosis (MTB) deoxyribonucleic acid (DNA) is developed using repeatable telecommunication wavelength modulation based on optical fiber communications laser wavelength and stability. MTB DNA concentrations of 1 μg/mL and 10 μg/mL were successfully demonstrated to have the same spectral half-width in the dip for optimum coupling. The sensitivity was shown to be −0.087 dB/(μg/mL) at all applied telecommunication wavelengths and the highest sensitivity achieved was 115 ng/mL without thiolated DNA immobilization onto a gold plate, which is better than the sensor limit of 400 ng/mL possible with commercial biosensor equipment.