Journal of Marine Science and Engineering (Apr 2022)

Numerical Study of Topographic Effects on Wind-Driven Coastal Upwelling on the Scotian Shelf

  • Shiliang Shan,
  • Jinyu Sheng

DOI
https://doi.org/10.3390/jmse10040497
Journal volume & issue
Vol. 10, no. 4
p. 497

Abstract

Read online

Wind-driven coastal upwelling can cause a sudden drop in sea surface temperatures (SSTs) of up to more than 8 °C on the inner Scotian Shelf (ScS) in the summer months. Three major coastal upwelling events on the ScS in the summer of 2012 are analyzed using in-situ SST observations and satellite remote sensing SST data. A spatial correlation analysis of satellite SST data shows an asymmetric distribution in the along-shore direction with smaller correlation coefficients in the downstream area than in the upstream area over the inner ScS during upwelling events. A regression analysis indicates that the wind impulse plays a major role in generating the SST cooling during the initial response stage of upwelling events. A nested-grid ocean circulation model (DalCoast-CSS) is used to examine the effect of irregular coastline and rugged bathymetry on the spatial and temporal variability of wind-driven upwelling over the inner ScS. The model has four submodels downscaling from the eastern Canadian Shelf to the central ScS. The model external forcing includes tides, winds, river discharges, and net heat flux at the sea surface. A comparison of model results with the satellite SST data reveals a satisfactory performance of the model in reproducing the development of coastal upwelling on the ScS. Model results demonstrate that the irregular coastline and rugged bathymetry play important roles in influencing the temporal and spatial evolution of the upwelling plume over the inner ScS. The irregular coastline (e.g., cape) is responsible for the relatively warm SSTs in two downstream inlets (i.e., St. Margarets Bay and Mahone Bay) and adjacent coastal waters. The rugged bathymetry (e.g., submerged bank) influences the spatial extent of filaments through the advection process.

Keywords