Remote Sensing (Jun 2020)

Assessing Snow Phenology over the Large Part of Eurasia Using Satellite Observations from 2000 to 2016

  • Yanhua Sun,
  • Tingjun Zhang,
  • Yijing Liu,
  • Wenyu Zhao,
  • Xiaodong Huang

DOI
https://doi.org/10.3390/rs12122060
Journal volume & issue
Vol. 12, no. 12
p. 2060

Abstract

Read online

Snow plays an important role in meteorological, hydrological and ecological processes, and snow phenology variation is critical for improved understanding of climate feedback on snow cover. The main purpose of the study is to explore spatial-temporal changes and variabilities of the extent, timing and duration, as well as phenology of seasonal snow cover across the large part of Eurasia from 2000 through 2016 using a Moderate Resolution Imaging Spectroradiometer (MODIS) cloud-free snow product produced in this study. The results indicate that there are no significant positive or negative interannual trends of snow cover extent (SCE) from 2000 to 2016, but there are large seasonal differences. SCE shows a significant negative trend in spring (p = 0.01) and a positive trend in winter. The stable snow cover areas accounting for 78.8% of the large part of Eurasia, are mainly located north of latitude 45° N and in the mountainous areas. In this stable area, the number of snow-covered days is significantly increasing (p < 0.05) in 6.4% of the region and decreasing in 9.1% of the region, with the decreasing areas being mainly located in high altitude mountain areas and the increasing area occurring mainly in the ephemeral snow cover areas of northeastern and southern China. In central Siberia, Pamir and the Tibetan Plateau, the snow onset date tends to be delayed while the end date is becoming earlier from 2000 to 2016. While in the relatively low altitude plain areas, such as the West Siberian Plain and the Eastern European Plain region, the snow onset date is tending to advance, the end date tends to be delayed, but the increase is not significant.

Keywords