Metals (Feb 2021)

Leaching Kinetics of Rare Earth Elements in Phosphoric Acid from Phosphate Rock

  • Zhili Li,
  • Zhihao Xie,
  • Jie Deng,
  • Dongsheng He,
  • Hengqin Zhao,
  • Huan Liang

DOI
https://doi.org/10.3390/met11020239
Journal volume & issue
Vol. 11, no. 2
p. 239

Abstract

Read online

Phosphate rock has been considered as one of the most significant secondary rare-earth resource, and the utilization of rare earth elements (REEs) in phosphate rock has attracted increasing attention. In this study, the leaching kinetics of REEs from a phosphate ore from China was studied with the variation of temperature and phosphoric acid concentration under the conditions: ratio of liquid to solid of 12 mL/g, stirring speed of 120 r/min, and phosphate particle size of −0.074 mm amounts 61.1%. The results suggest that there were two distinct stages in leaching process and kinetics of both stages followed shrinking core model. At fast reaction stage, the semi-empirical equation describing the kinetics was 1 − 3(1 − α)2/3 + 2(1 − α) = 1.885CH3PO40.89exp(−11220/8.31T)t. The semi-empirical equation for slow reaction stage was 1 − 3(1 − α)2/3 + 2(1 − α) = 0.299CH3PO42.50exp(−18720/8.31T)t. Using shrinking core model and time-to-a-given-fraction method, we found that leaching rate of fast reaction stage was controlled by solid product layer diffusion, and both solid product layer diffusion and chemical reaction determined slow reaction stage.

Keywords