Water Formation Reaction under Interfacial Confinement: Al<sub>0.25</sub>Si<sub>0.75</sub>O<sub>2</sub> on O-Ru(0001)
Jorge Cored,
Mengen Wang,
Nusnin Akter,
Zubin Darbari,
Yixin Xu,
Burcu Karagoz,
Iradwikanari Waluyo,
Adrian Hunt,
Dario Stacchiola,
Ashley Rose Head,
Patricia Concepcion,
Deyu Lu,
Jorge Anibal Boscoboinik
Affiliations
Jorge Cored
Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
Mengen Wang
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Nusnin Akter
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Zubin Darbari
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Yixin Xu
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Burcu Karagoz
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Iradwikanari Waluyo
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
Adrian Hunt
National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA
Dario Stacchiola
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Ashley Rose Head
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Patricia Concepcion
Instituto de Tecnología Química, Universitat Politècnica de València-Consejo Superior de Investigaciones Científicas (UPV-CSIC), Avenida de los Naranjos s/n, 46022 Valencia, Spain
Deyu Lu
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Jorge Anibal Boscoboinik
Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA
Confined nanosized spaces at the interface between a metal and a seemingly inert material, such as a silicate, have recently been shown to influence the chemistry at the metal surface. In prior work, we observed that a bilayer (BL) silica on Ru(0001) can change the reaction pathway of the water formation reaction (WFR) near room temperature when compared to the bare metal. In this work, we looked at the effect of doping the silicate with Al, resulting in a stoichiometry of Al0.25Si0.75O2. We investigated the kinetics of WFR at elevated H2 pressures and various temperatures under interfacial confinement using ambient pressure X-ray photoelectron spectroscopy. The apparent activation energy was lower than that on bare Ru(0001) but higher than that on the BL-silica/Ru(0001). The apparent reaction order with respect to H2 was also determined. The increased residence time of water at the surface, resulting from the presence of the BL-aluminosilicate (and its subsequent electrostatic stabilization), favors the so-called disproportionation reaction pathway (*H2O + *O ↔ 2 *OH), but with a higher energy barrier than for pure BL-silica.