BMC Genomics (Mar 2022)

Genome-wide identification and characterization of the TIFY gene family in kiwifruit

  • Junjie Tao,
  • Huimin Jia,
  • Mengting Wu,
  • Wenqi Zhong,
  • Dongfeng Jia,
  • Zupeng Wang,
  • Chunhui Huang

DOI
https://doi.org/10.1186/s12864-022-08398-8
Journal volume & issue
Vol. 23, no. 1
pp. 1 – 18

Abstract

Read online

Abstract Background The TIFY gene family is a group of plant-specific transcription factors involved in regulation of plant growth and development and a variety of stress responses. However, the TIFY family has not yet been well characterized in kiwifruit, a popular fruit with important nutritional and economic value. Results A total of 27 and 21 TIFY genes were identified in the genomes of Actinidia eriantha and A. chinensis, respectively. Phylogenetic analyses showed that kiwifruit TIFY genes could be classified into four major groups, JAZ, ZML, TIFY and PPD, and the JAZ group could be further clustered into six subgroups (JAZ I to JAZ VI). Members within the same group or subgroup have similar exon-intron structures and conserved motif compositions. The kiwifruit TIFY genes are unevenly distributed on the chromosomes, and the segmental duplication events played a vital role in the expansion of the TIFY genes in kiwifruit. Syntenic analyses of TIFY genes between kiwifruit and other five plant species (including Arabidopsis thaliana, Camellia sinensis, Oryza sativa, Solanum lycopersicum and Vitis vinifera) and between the two kiwifruit species provided valuable clues for understanding the potential evolution of the kiwifruit TIFY family. Molecular evolutionary analysis showed that the evolution of kiwifruit TIFY genes was primarily constrained by intense purifying selection. Promoter cis-element analysis showed that most kiwifruit TIFY genes possess multiple cis-elements related to stress-response, phytohormone signal transduction and plant growth and development. The expression pattern analyses indicated that TIFY genes might play a role in different kiwifruit tissues, including fruit at specific development stages. In addition, several TIFY genes with high expression levels during Psa (Pseudomonas syringae pv. actinidiae) infection were identified, suggesting a role in the process of Pas infection. Conclusions In this study, the kiwifruit TIFY genes were identified from two assembled kiwifruit genomes. In addition, their basic physiochemical properties, chromosomal localization, phylogeny, gene structures and conserved motifs, synteny analyses, promoter cis-elements and expression patters were systematically examined. The results laid a foundation for further understanding the function of TIFY genes in kiwifruit, and provided a new potential approach for the prevention and treatment of Psa infection.

Keywords