Iranian Journal of Electrical and Electronic Engineering (Jun 2022)

Risk Constrained Transmission Expansion Planning in Electricity Markets Considering Wind Curtailment Cost

  • T. Barforoushi,
  • R. Heydari

Journal volume & issue
Vol. 18, no. 2
pp. 2247 – 2247

Abstract

Read online

Curtailment of the production of wind resources due to uncertainty can affect the expansion of the transmission networks. The issue that needs to be addressed is how to expand the transmission network, which is accompanied by increasing wind energy utilization. In this paper, a new framework is proposed to solve the transmission expansion planning (TEP) problem in the presence of wind farms, considering wind curtailment cost. The proposed model is a risk-constrained stochastic bi-level problem that, the difference between the expected social welfare and investment cost is maximized at the upper level where optimal decisions on expansion plans are adopted by the independent system operator (ISO). To make the best use of wind generation resources, a new term called wind power curtailment cost is added to the upper level. Also, the risk index is included in expansion decisions. The market-clearing is considered at the lower level, aiming at maximizing social welfare. Uncertainties relating to wind power and the forecasted demand are modeled by sets of scenarios. Using duality theory, the proposed framework is modeled as mixed-integer linear programming (MILP) problem. The model is examined using the classical Garver’s six-bus test system and the IEEE 24-bus reliability test system (RTS). The results show that by considering the wind curtailment cost, the transmission network is expanded in a way that increases the wind energy utilization factor from 92.05% to 95.17%.

Keywords