Mathematics (Sep 2013)
Effective Congruences for Mock Theta Functions
Abstract
Let M(q) = ∑c(n) qn be one of Ramanujan’s mock theta functions. We establish the existence of infinitely many linear congruences of the form: c(An + B) ≡ 0 (mod lj) where A is a multiple of l and an auxiliary prime, p. Moreover, we give an effectively computable upper bound on the smallest such p for which these congruences hold. The effective nature of our results is based on the prior works of Lichtenstein [1] and Treneer [2].
Keywords