BMC Research Notes (Jan 2020)

Patterns of spon1b:GFP expression during early zebrafish brain development

  • Nathalie Agudelo-Dueñas,
  • Manu Forero-Shelton,
  • Irina V. Zhdanova,
  • Veronica Akle

DOI
https://doi.org/10.1186/s13104-019-4876-x
Journal volume & issue
Vol. 13, no. 1
pp. 1 – 7

Abstract

Read online

Abstract Objective F-spondin is part of a group of evolutionarily conserved extracellular matrix proteins in vertebrates. It is highly expressed in the embryonic floor plate, and it can bind to the ECM and promote neuronal outgrowth. A characterization of F-spondin expression patterns in the adult zebrafish brain was previously reported by our group. However, given its importance during development, we aimed to obtain a detailed description of green fluorescent protein (GFP) expression driven by the spon1b promotor, in the developing zebrafish brain of the transgenic Tg(spon1b:GFP) line, using light sheet fluorescence microscopy (LSFM). Results Images obtained in live embryos from 22 to 96 h post fertilization confirmed our earlier reports on the presence of spon1b:GFP expressing cells in the telencephalon and diencephalon (olfactory bulbs, habenula, optic tectum, nuclei of the medial longitudinal fasciculus), and revealed new spon1b:GFP populations in the pituitary anlage, dorso-rostral cluster, and ventro-rostral cluster. LSFM made it possible to follow the dynamics of cellular migration patterns during development. Conclusions spon1b:GFP larval expression patterns starts in early development in specific neuronal structures of the developing brain associated with sensory-motor modulation. LSFM evaluation of the transgenic Tg(spon1b:GFP) line provides an effective approach to characterize GFP expression patterns in vivo.

Keywords