Remote Sensing in Ecology and Conservation (Dec 2023)

Comparison of bird migration in a radar wind profiler and a dedicated bird radar

  • Nadja Weisshaupt,
  • Maxime Hervo,
  • Birgen Haest

DOI
https://doi.org/10.1002/rse2.350
Journal volume & issue
Vol. 9, no. 6
pp. 820 – 828

Abstract

Read online

Abstract Various types of radar systems are increasingly being used to monitor aerial biodiversity. Each of these types has different detection capabilities and sensitivities to environmental conditions, which affect the quantity and quality of the measured objects of interest. Radar wind profilers have long been known to detect birds, but their use in ornithology has remained limited, largely because of biologists' unfamiliarity with these systems. Although the potential of radar wind profilers for quantitative bird monitoring has been illustrated with time series of raw data, a comparison with a similar radar system more established in biology is missing. Here, we compare nocturnal bird migration patterns observed by a radar wind profiler during October 2019 and April 2021 with those from a dedicated bird radar BirdScan MR1. The systems were located 50 km apart with an altitudinal difference of about 850 m. The nightly migration intensities measured with both systems were highly correlated in both spring and autumn (Pearson correlation coefficient ≈ 0.8, P < 0.001), but estimated traffic measured by the radar wind profiler was on average five times higher in spring and nine times higher in autumn. Low ratios of the migration traffic rates of the Birdscan MR1 to those of the radar wind profiler occurred primarily in clear conditions. In both radar systems, migration occurred at significantly higher altitudes in spring than in autumn. Discrepancies in absolute numbers between both systems are likely due to both system‐inherent and external environmental and topographical factors, but also different quantification approaches. These findings support the capacity of radar wind profilers for aerial biomonitoring, independent of environmental conditions, and open up further avenues for studying the impact of weather on bird migration at detailed temporal and altitudinal scales.

Keywords