Nanophotonics (May 2023)

Sub-to-super-Poissonian photon statistics in cathodoluminescence of color center ensembles in isolated diamond crystals

  • Fiedler Saskia,
  • Morozov Sergii,
  • Komisar Danylo,
  • Ekimov Evgeny A.,
  • Kulikova Liudmila F.,
  • Davydov Valery A.,
  • Agafonov Viatcheslav N.,
  • Kumar Shailesh,
  • Wolff Christian,
  • Bozhevolnyi Sergey I.,
  • Mortensen N. Asger

DOI
https://doi.org/10.1515/nanoph-2023-0204
Journal volume & issue
Vol. 12, no. 12
pp. 2231 – 2237

Abstract

Read online

Impurity-vacancy centers in diamond offer a new class of robust photon sources with versatile quantum properties. While individual color centers commonly act as single-photon sources, their ensembles have been theoretically predicted to have tunable photon-emission statistics. Importantly, the particular type of excitation affects the emission properties of a color center ensemble within a diamond crystal. While optical excitation favors non-synchronized excitation of color centers within an ensemble, electron-beam excitation can synchronize the emitters excitation and thereby provides a control of the second-order correlation function g 2(0). In this letter, we demonstrate experimentally that the photon stream from an ensemble of color centers can exhibit g 2(0) both above and below unity, thereby confirming long standing theoretical predictions by Meuret et al. [S. Meuret, L. H. G. Tizei, T. Cazimajou, et al., “Photon bunching in cathodoluminescence,” Phys. Rev. Lett., vol. 114, no. 19, p. 197401, 2015.]. Such a photon source based on an ensemble of few color centers in a diamond crystal provides a highly tunable platform for informational technologies operating at room temperature.

Keywords