BMC Public Health (Sep 2022)
Comparison of obesity-related indicators for identifying metabolic syndrome among normal-weight adults in rural Xinjiang, China
Abstract
Abstract Background This study aimed to compare the ability of certain obesity-related indicators to identify metabolic syndrome (MetS) among normal-weight adults in rural Xinjiang. Methods A total of 4315 subjects were recruited in rural Xinjiang. The questionnaire, biochemical and anthropometric data were collected from them. Binary logistic regression was used to analyze the association between the z-score of each index and MetS. The area under the receiver-operating characteristic (ROC) curves were used to compare the diagnostic ability of each index. According to the cut-off value of each index, nomogram models were established and their diagnostic ability were evaluated. Results After adjusting for confounding factors, each indicator in different genders was correlated with MetS. Triglyceride-glucose index (TyG index) showed the strongest association with MetS in both males (OR = 3.749, 95%CI: 3.173–4.429) and females (OR = 3.521,95%CI: 2.990–4.148). Lipid accumulation product (LAP) showed the strongest diagnostic ability in both males (AUC = 0.831, 95%CI: 0.806–0.856) and females (AUC = 0.842, 95%CI: 0.820–0.864), and its optimal cut-off values were 39.700 and 35.065, respectively. The identification ability of the TyG index in different genders (males AUC: 0.817, females AUC: 0.817) was slightly weaker than LAP. Waist-to-height ratio (WHtR) had the similar AUC (males: 0.717, females: 0.747) to conicity index (CI) (males: 0.734, females: 0.749), whereas the identification ability of a body shape index (ABSI) (males AUC: 0.700, females AUC: 0.717) was relatively weak. Compared with the diagnostic ability of a single indicator, the AUC of the male nomogram model was 0.876 (95%CI: 0.856–0.895) and the AUC of the female model was 0.877 (95%CI: 0.856–0.896). The identification ability had been significantly improved. Conclusion LAP and TyG index are effective indicators for identifying MetS among normal-weight adults in rural Xinjiang. Nomogram models including age, CI, LAP, and TyG index can significantly improve diagnostic ability.
Keywords