Discover Oncology (Mar 2024)
Nephroblastoma-specific dysregulated gene SNHG15 with prognostic significance: scRNA-Seq with bulk RNA-Seq data and experimental validation
Abstract
Abstract Wilms tumor (WT) is the most common malignancy of the genitourinary system in children. Currently, the Integration of single-cell RNA sequencing (scRNA-Seq) and Bulk RNA sequencing (RNA-Seq) analysis of heterogeneity between different cell types in pediatric WT tissues could more accurately find prognostic markers, but this is lacking. RNA-Seq and clinical data related to WT were downloaded from the Therapeutically Applicable Research to Generate Effective Treatments (TARGET) database. Small nucleolar RNA host gene 15 (SNHG15) was identified as a risk signature from the TARGET dataset by using weighted gene co-expression network analysis, differentially expressed analysis and univariate Cox analysis. After that, the functional mechanisms, immunological and molecular characterization of SNHG15 were investigated at the scRNA-seq, pan-cancer, and RNA-seq levels using Gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), ESTIMATE, and CIBERSORT. Based on scRNA-seq data, we identified 20 clusters in WT and annotated 10 cell types. Integration of single-cell and spatial data mapped ligand-receptor networks to specific cell types, revealing M2 macrophages as hubs for intercellular communication. In addition, in vitro cellular experiments showed that siRNAs interfering with SNHG15 significantly inhibited the proliferation and migration of G401 cells and promoted the apoptosis of G401 cells compared with the control group. The effect of siRNAs interfering with SNHG15 on EMT-related protein expression was verified by Western blotting assay. Thus, our findings will improve our current understanding of the pathogenesis of WT, and they are potentially valuable in providing novel prognosis markers for the treatment of WT.
Keywords