Nature Communications (Feb 2025)
2D (NH4)BiI3 enables non-volatile optoelectronic memories for machine learning
Abstract
Abstract Machine learning is the core of artificial intelligence. Using optical signals for training and converting them into electrical signals for inference, combines the strengths of both, and thus can greatly improve machine learning efficiency. Optoelectronic memories are the hardware foundation for this strategy. However, the existing optoelectronic memories cannot modulate a large number of non-volatile resistive states using ultra-short and ultra-dim light pulses, leading to low training accuracy, slow computing speed and high energy consumption. Here, we synthesized a van der Waals layered photoconductive material, (NH4)BiI3, with excellent photoconductivity and strong dielectric screening effect. We further employed it as the photosensitive control gate in a floating-gate transistor, replacing the commonly used metal control gate, to construct an optical floating gate transistor which achieves adjustable synaptic weights under ultra-dim light without gate voltage assistance. Moreover, it shows ultra-low training energy consumption to generate a non-volatile state and the largest resistive state numbers among the known non-volatile optoelectronic memories. These exceptional performances enable the construction of one-transistor-one-memory device arrays to achieve ~99% accuracy in Artificial Neural Networks. Moreover, the device arrays can match the performance of GPU in YOLOv8 while greatly reducing energy consumption.