Scientific Reports (Feb 2024)

A TME-activated nano-catalyst for triple synergistic therapy of colorectal cancer

  • Qiang Liu,
  • Yurong Xiang,
  • Qiang Yu,
  • Quan Lv,
  • Zheng Xiang

DOI
https://doi.org/10.1038/s41598-024-53334-3
Journal volume & issue
Vol. 14, no. 1
pp. 1 – 14

Abstract

Read online

Abstract Colorectal cancer cells are highly heterogeneous and exhibit various drug resistances, making personalized treatment necessary. This typically involves a combination of different treatment modalities such as surgery, radiation, and chemotherapy to increase patient survival. Inspired by this, synergistic therapy, which combines multiple modalities into a single nanotherapeutic drug, shows promise in treating cancer. In this study, a nano-catalyst based on calcium peroxide (CaO2) and the chemotherapeutic drug doxorubicin hydrochloride (DOX) co-loaded into HPB nanoparticles (HPB@CaO2/DOX-PAA) was developed to achieve synergistic cancer treatment through chemodynamic/chemo/photothermal (CDT/CT/PTT) mechanisms. After being endocytosed by cancer cells, the nano-catalyst decomposes, releasing cargo. During near-infrared light irradiation, HPB induces a photothermal effect, DOX exhibits significant RNA and DNA destruction capabilities, meanwhile CaO2 produces a large amount of H2O2 in the moderately acidic TME, which combines with Fe2+ ions derived from HPB to form the highly toxic •OH in a Fenton-like reaction, enhancing the chemodynamic treatment. Assays conducted ex vivo and in vivo have exhibited the efficacy of this triple synergistic therapeutic regimen, indicating its potential clinical application.