Atmosphere (Dec 2020)

Seasonal Variation of Biogenic and Anthropogenic VOCs in a Semi-Urban Area Near Sydney, Australia

  • Jhonathan Ramirez-Gamboa,
  • Clare Paton-Walsh,
  • Ian Galbally,
  • Jack Simmons,
  • Elise-Andree Guerette,
  • Alan D. Griffith,
  • Scott D. Chambers,
  • Alastair G. Williams

DOI
https://doi.org/10.3390/atmos12010047
Journal volume & issue
Vol. 12, no. 1
p. 47

Abstract

Read online

Volatile organic compounds (VOCs) play a key role in the formation of ozone and secondary organic aerosol, the two most important air pollutants in Sydney, Australia. Despite their importance, there are few available VOC measurements in the area. In this paper, we discuss continuous GC-MS measurements of 10 selected VOCs between February (summer in the southern hemisphere) and June (winter in the southern hemisphere) of 2019 in a semi-urban area between natural eucalypt forest and the Sydney metropolitan fringe. Combined, isoprene, methacrolein, methyl-vinyl-ketone, α-pinene, p-cymene, eucalyptol, benzene, toluene xylene and tri-methylbenzene provide a reasonable representation of variability in the total biogenic VOC (BVOC) and anthropogenic VOC (AVOC) loading in the area. Seasonal changes in environmental conditions were reflected in observed BVOC concentrations, with a summer peak of 8 ppb, dropping to approximately 0.1 ppb in winter. Isoprene, and its immediate oxidation products methacrolein (MACR) and methyl-vinyl-ketone (MVK), dominated BVOC concentrations during summer and early autumn, while monoterpenes comprised the larger fraction during winter. Temperature and solar radiation drive most of the seasonal variation observed in BVOCs. Observed levels of isoprene, MACR and MVK in the atmosphere are closely related with variations in temperature and photosynthetically active radiation (PAR), but chemistry and meteorology may play a more important role for the monoterpenes. Using a nonlinear model, temperature explains 51% and PAR 38% of the isoprene, MACR and MVK variation. Eucalyptol dominated the observed monoterpene fraction (contributing ~75%), with p-cymene (20%) and α-pinene (5%) also present. AVOCs maintain an average concentration of ~0.4 ppb, with a slight decrease during autumn–winter. The low AVOC concentrations observed indicate a relatively small anthropogenic influence, generally occurring when (rare) northerly winds transport Sydney emissions to the measurement site. The site is influenced by domestic, commercial and vehicle AVOC emissions. Our observed AVOC concentrations can be explained by the seasonal changes in meteorology and the emissions in the area as listed in the NSW emissions inventory and thereby act as an independent validation of this inventory. We conclude that the variations in atmospheric composition observed during the seasons are an important variable to consider when formulating air pollution control policies over Sydney given the influence of biogenic sources during summer, autumn and winter.

Keywords