Shanghai Jiaotong Daxue xuebao (Aug 2024)
Temperature Control Scheme for Gas Turbine of Combined Cycles with Exhaust Gas Recirculation
Abstract
Under partial-load conditions, the combined application of exhaust gas recirculation of heat recovery steam generator and compressor inlet guide vane adjustment (EGR-IGVC) can effectively improve the performance of gas turbine combined cycle. However, if this strategy is combined with the temperature control scheme of constant T3(turbine inlet temperature)-T4m(maximum allowable turbine exhaust temperature), which is often adopted in gas turbine combined cycles under part-load conditions, it would cause a large bottoming cycle exergy destruction and a significant decrease in bottoming cycle power output at relatively lower loads. In this paper, a constant T3-T4m-T4d (the design value of turbine exhaust temperature) scheme suitable for the EGR-IGVC strategy is proposed, the PG9351FA gas turbine combined cycle unit is taken as the research object, and the partial-load performance of combined cycle under the two temperature control schemes is compared and investigated based on energy and exergy analysis. The results show that the combination of the EGR-IGVC strategy with the constant T3-T4m scheme is still the best at the ambient temperature of 15 ℃ and the partial-load rate of above 80%. At a load of 30%—80%, compared with the constant T3-T4m scheme, the EGR-IGVC strategy combined with the constant T3-T4m-T4d scheme can increase the gas turbine efficiency by 0.15%—0.47%, and decrease the exergy destruction of the heat recovery steam generator by more than 0.51%(2.15 MW). The results also show that adopting the constant T3-T4m-T4d scheme can always obtain higher combined cycle efficiency when the ambient temperature varies between 0 and 40 ℃. In addition, the increase in partial-load efficiency becomes more evident with the rise of ambient temperature.
Keywords