Water (Apr 2020)

Removal of Aquatic Cadmium Ions Using Thiourea Modified Poplar Biochar

  • Yanfeng Zhu,
  • Huageng Liang,
  • Ruilian Yu,
  • Gongren Hu,
  • Fu Chen

DOI
https://doi.org/10.3390/w12041117
Journal volume & issue
Vol. 12, no. 4
p. 1117

Abstract

Read online

Removal of aquatic cadmium ions using biochar is a low-cost method, but the results are usually not satisfactory. Modified biochar, which can be a low-cost and efficient material, is urgently required for Cd-polluted water and soil remediation. Herein, poplar bark (SB) and poplar sawdust (MB) were used as raw materials to prepare modified biochar, which is rich in N- and S- containing groups, i.e., TSBC-600 and TMBC-600, using a co-pyrolysis method with thiourea. The adsorption characteristics of Cd2+ in simulated wastewater were explored. The results indicated that the modification optimized the surface structure of biochar, Cd2+ adsorption process by both TSBC-600 and TMBC-600 was mainly influenced by the initial pH, biochar dosage, and contact time, sthe TSBC-600 showed a higher adsorption capacity compared to TMBC-600 under different conditions. The Langmuir adsorption isotherm model and pseudo-second-order kinetic model were more consistent with the adsorption behavior of TSBC-600 and TMBC-600 to Cd2+, the maximum adsorption capacity of TSBC-600 and TMBC-600 calculated by the Langmuir adsorption isotherm model was 19.998 mg/g and 9.631 mg/g, respectively. The modification method for introducing N and S into biochar by the co-pyrolysis of biomass and thiourea enhanced the removal rate of aquatic cadmium ions by biochar.

Keywords