Catalysts (Dec 2020)

Pt Nanoclusters Anchored on Hollow Ag-Au Nanostructures for Electrochemical Oxidation of Methanol

  • Xinghe Li,
  • Xinyu Qin,
  • Bingyi Yan,
  • Huiling Huang,
  • Wang Zhang,
  • Yuanzhe Piao

DOI
https://doi.org/10.3390/catal10121440
Journal volume & issue
Vol. 10, no. 12
p. 1440

Abstract

Read online

The synthetic method of Pt nanocluster-anchored hollow Ag-Au nanostructures and measurements of their electrocatalytic properties for methanol oxidation reaction (MOR) are reported here. In this synthesis, uniform Ag nanospheres were prepared by reduction of silver nitrate (AgNO3) with sodium borohydride (NaBH4) and then hollow Ag-Au nanostructures were synthesized via galvanic replacement of the as-prepared Ag nanospheres with Au3+. Finally, the reduction of potassium tetrachloroplatinate (II) (K2PtCl4) with ascorbic acid was performed to deposit Pt nanoclusters on the surface of hollow Ag-Au nanostructures. The hollow interior of Pt nanocluster-anchored Ag-Au nanostructures and change in the size of Pt nanoclusters by varying the injected molar ratio of Pt/Au were observed by transmission electron microscopy (TEM). Moreover, other morphological, compositional, and optical information of the obtained nanoscale materials were analyzed by X-ray diffraction analysis (XRD), inductively coupled plasma mass spectrometry (ICP-MS), and ultraviolet-visible spectroscopy (UV-vis). The electrocatalytic ability of the obtained Pt nanocluster-anchored hollow Ag-Au nanostructures toward MOR was confirmed by the results of cyclic voltametric (CV) measurements. The ease of three-step synthetic strategy and good electrocatalytic performance of the Pt nanocluster-anchored hollow Ag-Au nanostructures displayed their promising potential in the use of electrochemical oxidation of methanol.

Keywords