Nature Communications (May 2021)

Predicting optimal deep brain stimulation parameters for Parkinson’s disease using functional MRI and machine learning

  • Alexandre Boutet,
  • Radhika Madhavan,
  • Gavin J. B. Elias,
  • Suresh E. Joel,
  • Robert Gramer,
  • Manish Ranjan,
  • Vijayashankar Paramanandam,
  • David Xu,
  • Jurgen Germann,
  • Aaron Loh,
  • Suneil K. Kalia,
  • Mojgan Hodaie,
  • Bryan Li,
  • Sreeram Prasad,
  • Ailish Coblentz,
  • Renato P. Munhoz,
  • Jeffrey Ashe,
  • Walter Kucharczyk,
  • Alfonso Fasano,
  • Andres M. Lozano

DOI
https://doi.org/10.1038/s41467-021-23311-9
Journal volume & issue
Vol. 12, no. 1
pp. 1 – 13

Abstract

Read online

Deep brain stimulation programming for Parkinson’s disease entails the assessment of a large number of possible simulation settings, requiring numerous clinic visits after surgery. Here, the authors show that patterns of functional MRI can predict the optimal stimulation settings.