Transcriptome Analysis Reveals Genes Respond to Chlorophyll Deficiency in Green and Yellow Leaves of <i>Chrysanthemum morifolium</i> Ramat
Gang Shao,
Rui Liu,
Ziyan Qian,
Hua Zhang,
Qian Hu,
Yuqing Zhu,
Sumei Chen,
Fadi Chen,
Jiafu Jiang,
Likai Wang
Affiliations
Gang Shao
College of Plant Protection, Nanjing Agricultural University, Nanjing 210095, China
Rui Liu
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Ziyan Qian
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Hua Zhang
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Qian Hu
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Yuqing Zhu
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Sumei Chen
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Fadi Chen
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Jiafu Jiang
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Likai Wang
State Key Laboratory of Crop Genetics and Germplasm Enhancement, Key Laboratory of Landscaping, Ministry of Agriculture and Rural Affairs, Key Laboratory of Biology of Ornamental Plants in East China, National Forestry and Grassland Administration, College of Horticulture, Nanjing Agricultural University, Nanjing 210095, China
Chlorophyll is vital for photosynthesis to produce sugars and other useful biochemical products in green plants. However, the molecular effects of chlorophyll deficiency in Chrysanthemum are largely unknown. In this study, we identified a bud sport mutant chrysanthemum belonging to the variety ‘Nannong Binyun’, which has yellow branches. Plant physiological studies have shown that the yellow color is revealed due to chlorophyll loss. RNA extracts of yellow and green tissues were analyzed using high-throughput RNA-sequencing, and a total of 11,649 tissue enriched unigenes that respond to chlorophyll deficiency were identified, including 4803 unigenes upregulated in yellow tissues and 6846 unigenes in green tissues. GO analysis revealed that these tissue-enriched genes may involve in the physiological processes of chlorophyll accumulation and photosynthesis. In addition, many DEGs from the families of AP2-EREBP, bHLH, MYB, and FAR1 that are associated with plant development and stress response were detected. Our study found that most of the genes from the GRAS family were downregulated in yellow leaves, indicating their putative roles in stem cell maintenance and possible contribution to leaf size determination.