Cell Discovery (Aug 2023)

Cell type-specific NRBF2 orchestrates autophagic flux and adult hippocampal neurogenesis in chronic stress-induced depression

  • Shao-Qi Zhang,
  • Qiao Deng,
  • Qi Zhu,
  • Zhuang-Li Hu,
  • Li-Hong Long,
  • Peng-Fei Wu,
  • Jin-Gang He,
  • Hong-Sheng Chen,
  • Zhenyu Yue,
  • Jia-Hong Lu,
  • Fang Wang,
  • Jian-Guo Chen

DOI
https://doi.org/10.1038/s41421-023-00583-7
Journal volume & issue
Vol. 9, no. 1
pp. 1 – 23

Abstract

Read online

Abstract Dysfunctional autophagy and impairment of adult hippocampal neurogenesis (AHN) each contribute to the pathogenesis of major depressive disorder (MDD). However, whether dysfunctional autophagy is linked to aberrant AHN underlying MDD remains unclear. Here we demonstrate that the expression of nuclear receptor binding factor 2 (NRBF2), a component of autophagy-associated PIK3C3/VPS34-containing phosphatidylinositol 3-kinase complex, is attenuated in the dentate gyrus (DG) under chronic stress. NRBF2 deficiency inhibits the activity of the VPS34 complex and impairs autophagic flux in adult neural stem cells (aNSCs). Moreover, loss of NRBF2 disrupts the neurogenesis-related protein network and causes exhaustion of aNSC pool, leading to the depression-like phenotype. Strikingly, overexpressing NRBF2 in aNSCs of the DG is sufficient to rescue impaired AHN and depression-like phenotype of mice. Our findings reveal a significant role of NRBF2-dependent autophagy in preventing chronic stress-induced AHN impairment and suggest the therapeutic potential of targeting NRBF2 in MDD treatment.