Results in Physics (Mar 2018)
Assessing the accuracy of TDR-based water leak detection system
Abstract
The use of TDR system to detect leakage locations in underground pipes has been developed in recent years. In this system, a bi-wire is installed in parallel with the underground pipes and is considered as a TDR sensor. This approach greatly covers the limitations arisen with using the traditional method of acoustic leak positioning. TDR based leak detection method is relatively accurate when the TDR sensor is in contact with water in just one point. Researchers have been working to improve the accuracy of this method in recent years.In this study, the ability of TDR method was evaluated in terms of the appearance of multi leakage points simultaneously. For this purpose, several laboratory tests were conducted. In these tests in order to simulate leakage points, the TDR sensor was put in contact with water at some points, then the number and the dimension of the simulated leakage points were gradually increased. The results showed that with the increase in the number and dimension of the leakage points, the error rate of the TDR-based water leak detection system increases.The authors tried, according to the results obtained from the laboratory tests, to develop a method to improve the accuracy of the TDR-based leak detection systems. To do that, they defined a few reference points on the TDR sensor. These points were created via increasing the distance between two conductors of TDR sensor and were easily identifiable in the TDR waveform. The tests were repeated again using the TDR sensor having reference points. In order to calculate the exact distance of the leakage point, the authors developed an equation in accordance to the reference points. A comparison between the results obtained from both tests (with and without reference points) showed that using the method and equation developed by the authors can significantly improve the accuracy of positioning the leakage points. Keywords: Multiple leakage points, TDR, Reference points