Mathematics (Oct 2024)
A Two-Stage Facial Kinematic Control Strategy for Humanoid Robots Based on Keyframe Detection and Keypoint Cubic Spline Interpolation
Abstract
A plentiful number of facial expressions is the basis of natural human–robot interaction for high-fidelity humanoid robots. The facial expression imitation of humanoid robots involves the transmission of human facial expression data to servos situated within the robot’s head. These data drive the servos to manipulate the skin, thereby enabling the robot to exhibit various facial expressions. However, since the mechanical transmission rate cannot keep up with the data processing rate, humanoid robots often suffer from jitters in the imitation. We conducted a thorough analysis of the transmitted facial expression sequence data and discovered that they are extremely redundant. Therefore, we designed a two-stage strategy for humanoid robots based on facial keyframe detection and facial keypoint detection to achieve more natural and smooth expression imitation. We first built a facial keyframe detection model based on ResNet-50, combined with optical flow estimation, which can identify key expression frames in the sequence. Then, a facial keypoint detection model is used on the keyframes to obtain the facial keypoint coordinates. Based on the coordinates, the cubic spline interpolation method is used to obtain the motion trajectory parameters of the servos, thus realizing the robust control of the humanoid robot’s facial expression. Experiments show that, unlike before where the robot’s imitation would stutter at frame rates above 25 fps, our strategy allows the robot to maintain good facial expression imitation similarity (cosine similarity of 0.7226), even at higher frame rates.
Keywords