Nonlinear Processes in Geophysics (Sep 2008)
Mapping soil fractal dimension in agricultural fields with GPR
Abstract
We documented that the mapping of the fractal dimension of the backscattered Ground Penetrating Radar traces (Fractal Dimension Mapping, FDM) accomplished over heterogeneous agricultural fields gives statistically sound combined information about the spatial distribution of Andosol' dielectric permittivity, volumetric and gravimetric water content, bulk density, and mechanical resistance under seven different management systems. The roughness of the recorded traces was measured in terms of a single number <i>H</i>, the Hurst exponent, which integrates the competitive effects of volumetric water content, pore topology and mechanical resistance in space and time. We showed the suitability to combine the GPR traces fractal analysis with routine geostatistics (kriging) in order to map the spatial variation of soil properties by nondestructive techniques and to quantify precisely the differences under contrasting tillage systems. Three experimental plots with zero tillage and 33, 66 and 100% of crop residues imprinted the highest roughness to GPR wiggle traces (mean <i>H<sub>R/S</sub></i>=0.15), significantly different to Andosol under conventional tillage (<i>H<sub>R/S</sub></i>=0.47).