International Journal of Nanomedicine (Jun 2014)

Preparation and characterization of Tamoxifen citrate loaded nanoparticles for breast cancer therapy

  • Maji R,
  • Dey NS,
  • Satapathy BS,
  • Mukherjee B,
  • Mondal S

Journal volume & issue
Vol. 2014, no. Issue 1
pp. 3107 – 3118

Abstract

Read online

Ruma Maji, Niladri Shekhar Dey, Bhabani Sankar Satapathy, Biswajit Mukherjee, Subhasish MondalDepartment of Pharmaceutical Technology, Jadavpur University, Kolkata (Calcutta), IndiaBackground: Four formulations of Tamoxifen citrate loaded polylactide-co-glycolide (PLGA) based nanoparticles (TNPs) were developed and characterized. Their internalization by Michigan Cancer Foundation-7 (MCF-7) breast cancer cells was also investigated.Methods: Nanoparticles were prepared by a multiple emulsion solvent evaporation method. Then the following studies were carried out: drug-excipients interaction using Fourier transform infrared spectroscopy (FTIR), surface morphology by field emission scanning electron micro­scopy (FESEM), zeta potential and size distribution using a Zetasizer Nano ZS90 and particle size analyzer, and in vitro drug release. In vitro cellular uptake of nanoparticles was assessed by confocal microscopy and their cell viability (%) was studied.Results: No chemical interaction was observed between the drug and the selected excipients. TNPs had a smooth surface, and a nanosize range (250–380 nm) with a negative surface charge. Drug loadings of the prepared particles were 1.5%±0.02% weight/weight (w/w), 2.68%±0.5% w/w, 4.09%±0.2% w/w, 27.16%±2.08% w/w for NP1–NP4, respectively. A sustained drug release pattern from the nanoparticles was observed for the entire period of study, ie, up to 60 days. Further, nanoparticles were internalized well by the MCF-7 breast cancer cells on a concentration dependent manner and were present in the cytoplasm. The nucleus was free from nanoparticle entry. Drug loaded nanoparticles were found to be more cytotoxic than the free drug.Conclusion: TNPs (NP4) showed the highest drug loading, released the drug in a sustained manner for a prolonged period of time and were taken up well by the MCF-7 breast cancer cell line in vitro. Thus the formulation may be suitable for breast cancer treatment due to the good permeation of the formulation into the breast cancer cells.Keywords: polylactide-co-glycolide nanoparticle, PLGA, breast cancer, multiple emulsion