Precision Nanomedicine (Dec 2022)

Polymeric nanocarriers co-encapsulating PET probes and protein therapeutics

  • Chester Markwalter,
  • Leon Wang,
  • Ola Sharaf,
  • Prashanth Padakanti,
  • Mark Esposito,
  • Brian Wilson,
  • Eric Blankemeyer,
  • Sean Carlin,
  • Abass Alavi,
  • Robert K. Prud'homme

Journal volume & issue
Vol. 6, no. 1

Abstract

Read online

Nanocarriers encapsulating nucleic acids or protein therapeutics are important tools for modulating biodistribution and enhancing intracellular delivery of biologics. We have recently developed inverse Flash NanoPrecipitation (iFNP), demonstrating its effectiveness in encapsulating biologics at high loadings and encapsulation efficiency. Here, we present the biodistribution of two iFNP nanocarriers using 64Cu positron emission tomography imaging in a murine adenocarcinoma xenograft model characterized by elevated macrophage content. Two nanocarriers with similar sizes and surfaces were prepared. iFNP produces core-shell-corona nanocarriers where the hydrophobic shell layer in one case was poly(lactic acid) (PLA), and the other nanocarrier shell was poly(styrene) (PS). While the expectation was that the biodistribution and clearance of both nanocarriers would be similar, it was found that the clearance of the PS nanocarrier oc-curred in less than 3 hours while the PLA nanocarrier exhibited sustained circulation times. The mechanism of nanocarrier instability for the PS shell nanocarrier manifests as the development of a negative surface charge due to the exposure of the anionic nanocarrier inner core. The stable PLA-based formulation exhibited circulation times greater than 24 hours and enhanced accumu-lation in the lymphatics and the tumor relative to the unstable formulation. The novel mecha-nism of encapsulation by iFNP motivates the fundamental studies on nanoparticle biodistribu-tion reported here.