Magnetochemistry (Jun 2021)
Near-Infrared Emissive Cyanido-Bridged {YbFe<sub>2</sub>} Molecular Nanomagnets Sensitive to the Nitrile Solvents of Crystallization
Abstract
One of the pathways toward luminescent single-molecule magnets (SMMs) is realized by the self-assembly of lanthanide(3+) ions with cyanido transition metal complexes. We report a novel family of emissive SMMs, {YbIII(4-pyridone)4[FeII(phen)2(CN)2]2}(CF3SO3)3·solv (solv = 2MeCN, 1·MeCN; 2AcrCN, 1·AcrCN; 2PrCN, 1·PrCN; 2MalCN·1MeOH; 1·MalCN; MeCN = acetonitrile, AcrCN = acrylonitrile, PrCN = propionitrile, MalCN = malononitrile). They are based on paramagnetic YbIII centers coordinating diamagnetic [FeII(phen)2(CN)2] metalloligands but differ in the nitrile solvents of crystallization. They exhibit a field-induced slow magnetic relaxation dominated by a Raman process, without an Orbach relaxation as indicated by AC magnetic data and the ab initio calculations. The Raman relaxation is solvent-dependent as represented by the power “n” of the BRamanTn contribution varying from 3.07(1), to 2.61(1), 2.37(1), and 1.68(4) for 1·MeCN, 1·PrCN, 1·AcrCN, and 1·MalCN, respectively, while the BRaman parameter adopts the opposite trend. This was correlated with the variation of phonon modes schemes, including the number of available vibrational modes and their energies, dependent on the increasing complexity of the applied nitrile. 1·MeCN and 1·MalCN show the additional T-independent relaxation assignable to dipole-dipole interactions as confirmed by its suppression in 1·AcrCN and 1·PrCN revealing longer Yb–Yb distances and the disappearance in the LuIII-diluted 1·MeCN@Lu. All compounds exhibit YbIII–centered near-infrared photoluminescence sensitized by organic ligands.
Keywords