International Islamic University Malaysia Engineering Journal (Nov 2016)

KNN BASED CLASSIFICATION OF DIGITAL MODULATED SIGNALS

  • Sajjad Ahmed Ghauri

DOI
https://doi.org/10.31436/iiumej.v17i2.641
Journal volume & issue
Vol. 17, no. 2

Abstract

Read online

Demodulation process without the knowledge of modulation scheme requires Automatic Modulation Classification (AMC). When receiver has limited information about received signal then AMC become essential process. AMC finds important place in the field many civil and military fields such as modern electronic warfare, interfering source recognition, frequency management, link adaptation etc. In this paper we explore the use of K-nearest neighbor (KNN) for modulation classification with different distance measurement methods. Five modulation schemes are used for classification purpose which is Binary Phase Shift Keying (BPSK), Quadrature Phase Shift Keying (QPSK), Quadrature Amplitude Modulation (QAM), 16-QAM and 64-QAM. Higher order cummulants (HOC) are used as an input feature set to the classifier. Simulation results shows that proposed classification method provides better results for the considered modulation formats.