Gaoyuan qixiang (Oct 2024)

Study on the Phenological Changes of Snow and Lake Ice in Qinghai Lake Basin based on MODIS Data

  • Jiaojiao SHEN,
  • Yanlong SHEN,
  • Zhiqi OUYANG,
  • Hui GUO,
  • Xiaoyan WANG

DOI
https://doi.org/10.7522/j.issn.1000-0534.2024.00021
Journal volume & issue
Vol. 43, no. 5
pp. 1177 – 1189

Abstract

Read online

Phenological changes are of great significance to the study of climate response and ecological environment.Based on the MODIS V6 snow product and reflectivity product in the past 20 years, the snow and lake ice phenology in the Qinghai Lake Basin were obtained, and the spatial distribution characteristics of the two were analyzed.On this basis, Theil-Sen Median method and linear regression method were used to analyze the variation trend of snow phenology and lake ice phenology, as well as the correlation between them in low altitude areas.The results show that: (1) Freeze-up start, Break-up start and Exist Duration of lake ice in Qinghai Lake are in the range of 321~389 d, 425~464 d and 0~174 d, respectively.On the whole, Freeze-up start and Break-up start of lake ice were delayed, and the delay rates were 0.3 d·a-1 and 0.2 d·a-1, respectively.Exist Duration of lake ice showed a shortening trend, with a shortening rate of 0.6 d·a-1.There is a significant correlation between lake ice phenology and longitude.From east to west, Freeze-up start is postponed, Break-up start is advanced, and Exist Duration of lake ice is shortened.(2) Start of snow cover days, End of snow cover days and Snow cover days in Qinghai Lake Basin are distributed in the range of 275~404 d, 353~484 d and 3~209 d, respectively.Among them, start of snow cover days and End of snow cover days showed an early trend and a delayed trend respectively, and the change rates were 0.8 d·a-1 and 0.11 d·a-1 respectively.Snow cover days showed an increasing trend, with a growth rate of 0.6 d·a-1.Snow phenology is closely related to altitude.With the increase of altitude, start of snow cover days is advanced, End of snow cover days is delayed, and Snow cover days increases.(3) Air temperature and negative accumulated temperature in winter are important factors affecting lake ice phenology.With the increase of temperature and negative accumulated temperature in winter, Freeze-up start will be delayed, Break-up start will be advanced, and Exist Duration of lake ice will be shortened.For snow phenology, there is a significant negative correlation between Snow cover days and the temperature.The temperature decreases and Snow cover days increases.(4) There is a potential relationship between some snow cover and lake ice phenology parameters in low-altitude watersheds.There is a significant negative correlation between the beginning date of snow cover and the beginning date of lake ice freezing, and the correlation coefficient is -0.404.As the lake surface insulation layer, the increase of snow cover days will also greatly slow down the speed of lake ice melting, resulting in the delay of lake ice melting date.Therefore, there is a positive correlation between the two, and the correlation coefficient is 0.349.The change law of ecosystem in the basin revealed by this study is of positive significance to the local ecosystem, and can provide theoretical basis and technical support for the environmental monitoring of Qinghai Lake Basin.

Keywords