Currently, there are no universal methods for calculating the heat transfer and pressure drop for a wide range of two-phase flow parameters in mini-channels due to changes in the void fraction and flow regime. Many experimental studies have been carried out, and narrow-range calculation methods have been developed. With increasing pressure, it becomes possible to expand the range of parameters for applying reliable calculation methods as a result of changes in the flow regime. This paper provides an overview of methods for calculating the pressure drops and heat transfer of two-phase flows in small-diameter channels and presents a comparison of calculation methods. For conditions of high reduced pressures pr = p/pcr ≈ 0.4 ÷ 0.6, the results of own experimental studies of pressure drops and flow boiling heat transfer of freons in the region of low and high mass flow rates (G = 200–2000 kg/m2 s) are presented. A description of the experimental stand is given, and a comparison of own experimental data with those obtained using the most reliable calculated relations is carried out.