The variation of charge density of two-electron multicentre bonding (pancake bonding) between semiquinone radicals with pressure and temperature was studied on a salt of 5,6-dichloro-2,3-dicyanosemiquinone radical anion (DDQ) with 4-cyano-N-methylpyridinium cation (4-CN) using the Transferable Aspheric Atom Model (TAAM) refinement. The pancake-bonded radical dimers are stacked by non-bonding π-interactions. With rising pressure, the covalent character of interactions between radicals increases, and above 2.55 GPa, the electron density indicates multicentric covalent interactions throughout the stack. The experimental charge densities were verified and corroborated by periodic DFT computations. The TAAM approach has been tested and validated for atomic resolution data measured at ambient pressure; this work shows this approach can also be applied to diffraction data obtained at pressures up to several gigapascals.