Atmosphere (Mar 2022)

A Physical Mechanism for the Indian Summer Monsoon—Arctic Sea-Ice Teleconnection

  • Suchithra Sundaram,
  • David M. Holland

DOI
https://doi.org/10.3390/atmos13040566
Journal volume & issue
Vol. 13, no. 4
p. 566

Abstract

Read online

Significant changes in the Arctic climate, particularly a rapid decline of September Arctic sea ice has occurred over the past few decades. Though the exact reason for such drastic changes is still unknown, studies suggest anthropogenic drivers, natural variability of the climate system, and a combination of both as reasons. The present study focus on the influence of one of the natural variabilities of the climate system, the teleconnections associated with the Indian Summer Monsoon (ISM), and its relationship to September Arctic sea ice. Using 50 years (1951–2000) of National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR) NCEP/NCAR reanalysis data, APHRODITE precipitation data, Gridded Monthly Sea Ice Extent and Concentration, 1850 Onward, V2, and HadISST sea-ice concentration data, it is shown that during many strong (weak) ISM years, the Arctic sea ice increased (decreased) predominantly over the Chukchi and Beaufort Seas. The ISM plays a significant role in causing a positive (negative) North Atlantic Oscillation (NAO) during strong (weak) ISM years through the monsoon-desert mechanism associated with monsoonal heating. Simultaneously, the NAO during a strong (weak) ISM causes weakening (strengthening) of the Beaufort Sea High (BSH). The strength of the BSH modulates the Arctic atmospheric circulation, advecting cold air and the direction of the transpolar drift stream, both leading to the generation of more (less) sea ice over the Chukchi-Beaufort Sea region during strong (weak) ISM years. The study illustrates a new atmospheric teleconnection between the tropics and the Arctic.

Keywords