Advances in the Biological Application of Force-Induced Remnant Magnetization Spectroscopy
Shuyu Liao,
Mengxue Sun,
Jinxiu Zhan,
Min Xu,
Li Yao
Affiliations
Shuyu Liao
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
Mengxue Sun
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
Jinxiu Zhan
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
Min Xu
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
Li Yao
State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Beijing National Laboratory for Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing 100190, China
Biomolecules participate in various physiological and pathological processes through intermolecular interactions generally driven by non-covalent forces. In the present review, the force-induced remnant magnetization spectroscopy (FIRMS) is described and illustrated as a novel method to measure non-covalent forces. During the FIRMS measurement, the molecular magnetic probes are magnetized to produce an overall magnetization signal. The dissociation under the interference of external force yields a decrease in the magnetic signal, which is recorded and collected by atomic magnetometer in a spectrum to study the biological interactions. Furthermore, the recent FIRMS development with various external mechanical forces and magnetic probes is summarized.