Antioxidants (Apr 2024)
Hydrogen Sulfide and Irisin, Potential Allies in Ensuring Cardiovascular Health
Abstract
Irisin is a myokine secreted under the influence of physical activity and exposure to low temperatures and through different exogenous stimuli by the cleavage of its precursor, fibronectin type III domain-containing protein 5 (FNDC5). It is mainly known for maintaining of metabolic homeostasis, promoting the browning of white adipose tissue, the thermogenesis process, and glucose homeostasis. Growing experimental evidence suggests the possible central role of irisin in the regulation of cardiometabolic pathophysiological processes. On the other side, hydrogen sulfide (H2S) is well recognized as a pleiotropic gasotransmitter that regulates several homeostatic balances and physiological functions and takes part in the pathogenesis of cardiometabolic diseases. Through the S-persulfidation of cysteine protein residues, H2S is capable of interacting with crucial signaling pathways, exerting beneficial effects in regulating glucose and lipid homeostasis as well. H2S and irisin seem to be intertwined; indeed, recently, H2S was found to regulate irisin secretion by activating the peroxisome proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α)/FNDC5/irisin signaling pathway, and they share several mechanisms of action. Their involvement in metabolic diseases is confirmed by the detection of their lower circulating levels in obese and diabetic subjects. Along with the importance of metabolic disorders, these modulators exert favorable effects against cardiovascular diseases, preventing incidents of hypertension, atherosclerosis, heart failure, myocardial infarction, and ischemia–reperfusion injury. This review, for the first time, aims to explore the role of H2S and irisin and their possible crosstalk in cardiovascular diseases, pointing out the main effects exerted through the common molecular pathways involved.
Keywords