Advanced Engineering Research (Apr 2021)

Strength analysis of the TWS 600 plunger pump body in Solid Works Simulation

  • E. V. Koleda,
  • S. O. Kireev,
  • M. V. Korchagina,
  • A. V. Efimov,
  • J. Sperling

DOI
https://doi.org/10.23947/2687-1653-2021-21-1-71-81
Journal volume & issue
Vol. 21, no. 1
pp. 71 – 81

Abstract

Read online

Introduction. The relevance of the presented paper is due to the widespread use of plunger pumps in industrial practice, in particular, in gas and oil production. The quality of working operations and the efficiency of further well operation depend largely on their reliability. The improvement of plunger pumps involves increasing their reliability, increasing their service life, efficiency, downsizing, reduction in weight, labor intensity of installation and repair work. The modernization of the mechanism includes its power study since the found forces are used for subsequent strength calculations. Before the appearance of programs for the numerical analysis of solid objects, the analytical solution to the problem of strength calculation of the high-pressure pump drive frame was a very time-consuming and expensive procedure. The situation has changed with the development of computer technologies and the inclusion of the finite element method in the computer-aided design systems. The objective of this work is to perform a strength calculationon the TWS 600 plunger pump body made of 09G2S steel. Materials and Methods. A method for determining the reactions of the crank shaft supports of a high-pressure plunger pump and strength calculation of the drive part housing is developed. The direction and magnitude of the resulting forces and reactions of the supports are determined graphically according to the superposition principle of the force action on the supports. Strength calculations were performed using the finite element method in the computer-aided design system Solid Works Simulation. In this case, solid and finite-element models of the body with imposed boundary conditions were used, which were identified during the analysis of the design and the calculation of the forces arising under the pump operation.Results. The reactions in the crankshaft supports are described with account for the forces generated by the plunger depending on its operating mode and the crank position. The forces acting on each of the plungers and the resulting reactions in each of the supports are determined. The diagrams of stresses and the safety factor are presented, which provide assessing the strength of the body and developing recommendations for creating a more rational design.Discussion and Conclusions. As a result of the calculations, we have identified areas of the structure with minimum safety factors, and areas that are several times higher than the recommended values. This provides optimizing the designunder study through strengthening the first and reducing the thickness of the metal on the second. From the point of view of weight and size characteristics and maintainability, the results of the strength calculation performed can be used to optimize the design of the pump body under typical operating conditions.

Keywords