Precise adaptation of the greenhouse lighting spectrum to basic photophysiological processes can effectively and directionally stimulate plant growth and development. The optimal spectrum depends on the plant species and the stage of development and could be assessed empirically. The aim of this study is to determine the LED illumination spectrum that provides a significant improvement in the growth rate and accumulation of biologically active compounds for basil plants (Ocimum basilicum L.) under hydroponic cultivation compared to more traditional lighting sources. The following light sources with various emission spectra were used: an LED lamp within a spectral range of 400–800 nm (B:G:R 15%:5%:80%); a high-pressure sodium lamp (HPS) (B:G:R 5%:45%:50%); a compact fluorescent lamp (B:G:R 20%:40%:40%); a grow LED strip (B:G:R 15%:40%:45%); a white LED lamp (B:G:R 30%:45%:25%); a customized LED lighting setup in color ratios 100%B, 75%B + 25%R, 50%B + 50%R, 25%B + 75%R, 100%R, and natural lighting. A photosynthetic photon flux density (PPFD) of 150 μmol∙m−2∙s−1 was provided with all the sources. It was demonstrated reliably that employing the LED strip as an illumination device gives a 112% increase in basil plant yield compared to the HPS; the transpiration coefficient for the LED strip is six times lower than for the HPS. The content of flavonoids in the basil aerial parts on the 30th, 50th, and 70th days of development is 3.2 times higher than for the HPS; the metabolite composition is also more uniform for LED strip lighting.