Atmosphere (Dec 2023)

Establishing a Real-Time Prediction System for Fine Particulate Matter Concentration Using Machine-Learning Models

  • Chih-Chiang Wei,
  • Wei-Jen Kao

DOI
https://doi.org/10.3390/atmos14121817
Journal volume & issue
Vol. 14, no. 12
p. 1817

Abstract

Read online

With the rapid urbanization and industrialization in Taiwan, pollutants generated from industrial processes, coal combustion, and vehicle emissions have led to severe air pollution issues. This study focuses on predicting the fine particulate matter (PM2.5) concentration. This enables individuals to be aware of their immediate surroundings in advance, reducing their exposure to high concentrations of fine particulate matter. The research area includes Keelung City and Xizhi District in New Taipei City, located in northern Taiwan. This study establishes five fine prediction models based on machine-learning algorithms, namely, the deep neural network (DNN), M5’ decision tree algorithm (M5P), M5’ rules decision tree algorithm (M5Rules), alternating model tree (AMT), and multiple linear regression (MLR). Based on the predictive results from these five models, the study evaluates the optimal model for forecast horizons and proposes a real-time PM2.5 concentration prediction system by integrating various models. The results demonstrate that the prediction errors vary across different models at different forecast horizons, with no single model consistently outperforming the others. Therefore, the establishment of a hybrid prediction system proves to be more accurate in predicting future PM2.5 concentration compared to a single model. To assess the practicality of the system, the study process involved simulating data, with a particular focus on the winter season when high PM2.5 concentrations are prevalent. The predictive system generated excellent results, even though errors increased in long-term predictions. The system can promptly adjust its predictions over time, effectively forecasting the PM2.5 concentration for the next 12 h.

Keywords