NeuroImage (Sep 2023)

Vicarious touch: Overlapping neural patterns between seeing and feeling touch

  • Sophie Smit,
  • Denise Moerel,
  • Regine Zopf,
  • Anina N. Rich

Journal volume & issue
Vol. 278
p. 120269

Abstract

Read online

Simulation theories propose that vicarious touch arises when seeing someone else being touched triggers corresponding representations of being touched. Prior electroencephalography (EEG) findings show that seeing touch modulates both early and late somatosensory responses (measured with or without direct tactile stimulation). Functional Magnetic Resonance Imaging (fMRI) studies have shown that seeing touch increases somatosensory cortical activation. These findings have been taken to suggest that when we see someone being touched, we simulate that touch in our sensory systems. The somatosensory overlap when seeing and feeling touch differs between individuals, potentially underpinning variation in vicarious touch experiences. Increases in amplitude (EEG) or cerebral blood flow response (fMRI), however, are limited in that they cannot test for the information contained in the neural signal: seeing touch may not activate the same information as feeling touch. Here, we use time-resolved multivariate pattern analysis on whole-brain EEG data from people with and without vicarious touch experiences to test whether seen touch evokes overlapping neural representations with the first-hand experience of touch. Participants felt touch to the fingers (tactile trials) or watched carefully matched videos of touch to another person's fingers (visual trials). In both groups, EEG was sufficiently sensitive to allow decoding of touch location (little finger vs. thumb) on tactile trials. However, only in individuals who reported feeling touch when watching videos of touch could a classifier trained on tactile trials distinguish touch location on visual trials. This demonstrates that, for people who experience vicarious touch, there is overlap in the information about touch location held in the neural patterns when seeing and feeling touch. The timecourse of this overlap implies that seeing touch evokes similar representations to later stages of tactile processing. Therefore, while simulation may underlie vicarious tactile sensations, our findings suggest this involves an abstracted representation of directly felt touch.

Keywords