Reproductive Biology and Endocrinology (Jul 2024)

Investigating developmental characteristics of biopsied blastocysts stratified by mitochondrial copy numbers using time-lapse monitoring

  • Chun-I Lee,
  • Ching-Ya Su,
  • Hsiu-Hui Chen,
  • Chun-Chia Huang,
  • En-Hui Cheng,
  • Tsung-Hsien Lee,
  • Pin-Yao Lin,
  • Tzu-Ning Yu,
  • Chung-I Chen,
  • Ming-Jer Chen,
  • Maw-Sheng Lee,
  • Chien-Hong Chen

DOI
https://doi.org/10.1186/s12958-024-01262-2
Journal volume & issue
Vol. 22, no. 1
pp. 1 – 9

Abstract

Read online

Abstract Background For in vitro fertilization (IVF), mitochondrial DNA (mtDNA) levels in the trophectodermal (TE) cells of biopsied blastocysts have been suggested to be associated with the cells’ developmental potential. However, scholars have reached differing opinions regarding the use of mtDNA levels as a reliable biomarker for predicting IVF outcomes. Therefore, this study aims to assess the association of mitochondrial copy number measured by mitoscore associated with embryonic developmental characteristics and ploidy. Methods This retrospective study analyzed the developmental characteristics of embryos and mtDNA levels in biopsied trophectodermal cells. The analysis was carried out using time-lapse monitoring and next-generation sequencing from September 2021 to September 2022. Five hundred and fifteen blastocysts were biopsied from 88 patients undergoing IVF who met the inclusion criteria. Embryonic morphokinetics and morphology were evaluated at 118 h after insemination using all recorded images. Blastocysts with appropriate morphology on day 5 or 6 underwent TE biopsy and preimplantation genetic testing for aneuploidy (PGT-A). Statistical analysis involved generalized estimating equations, Pearson’s chi-squared test, Fisher’s exact test, and Kruskal–Wallis test, with a significance level set at P < 0.05. Results To examine differences in embryonic characteristics between blastocysts with low versus high mitoscores, the blastocysts were divided into quartiles based on their mitoscore. Regarding morphokinetic characteristics, no significant differences in most developmental kinetics and observed cleavage dysmorphisms were discovered. However, blastocysts in mitoscore group 1 had a longer time for reaching 3-cell stage after tPNf (t3; median: 14.4 h) than did those in mitoscore group 2 (median: 13.8 h) and a longer second cell cycle (CC2; median: 11.7 h) than did blastocysts in mitoscore groups 2 (median: 11.3 h) and 4 (median: 11.4 h; P < 0.05). Moreover, blastocysts in mitoscore group 4 had a lower euploid rate (22.6%) and a higher aneuploid rate (59.1%) than did those in the other mitoscore groups (39.6–49.3% and 30.3–43.2%; P < 0.05). The rate of whole-chromosomal alterations in mitoscore group 4 (63.4%) was higher than that in mitoscore groups 1 (47.3%) and 2 (40.1%; P < 0.05). A multivariate logistic regression model was used to analyze associations between the mitoscore and euploidy of elective blastocysts. After accounting for factors that could potentially affect the outcome, the mitoscore still exhibited a negative association with the likelihood of euploidy (adjusted OR = 0.581, 95% CI: 0.396–0.854; P = 0.006). Conclusions Blastocysts with varying levels of mitochondrial DNA, identified through biopsies, displayed similar characteristics in their early preimplantation development as observed through time-lapse imaging. However, the mitochondrial DNA level determined by the mitoscore can be used as a standalone predictor of euploidy.

Keywords