Water Science and Technology (Jul 2021)

Optimization of TiO2-P25 photocatalyst dose and H2O2 concentration for advanced photo-oxidation using smartphone-based colorimetry

  • Nazarii Danyliuk,
  • Tetiana Tatarchuk,
  • Karthik Kannan,
  • Alexander Shyichuk

DOI
https://doi.org/10.2166/wst.2021.236
Journal volume & issue
Vol. 84, no. 2
pp. 469 – 483

Abstract

Read online

Color images taken by a smartphone camera were used to estimate the rate of advanced photo-oxidation reaction of Direct Red 23 (DR23) azo dye as a model organic pollutant. The red, green, blue color coordinates were tested to quantify the dye. Images of the reaction mixture were taken at specified intervals to obtain kinetic lines and reaction rate constants. Both the reaction rate constant and the final degree of degradation were plotted as functions of the photocatalyst dose and the concentration of H2O2. The smartphone measurements are fully consistent with the reference spectrophotometry data. The maximum degradation efficiency of the DR23 dye was recorded at C0(H2O2) = 2.5 mM and photocatalyst dose equal to 1.0 mg/L. Higher H2O2 concentrations reduce the degradation rate as a result of the side reaction of H2O2 with OH radicals. A two-factor experimental design was used to study the effects of photocatalyst dose and H2O2 concentration with five and seven levels, respectively. The analysis of variance results indicated that the concentration of H2O2 had the greater influence. The smartphone provides quick and easy measurement of the photodegradation rate directly in the solutions without sampling. The proposed approach can be applied under field conditions in wastewater treatment plants. Highlights Smartphone-based colorimetry was used to determine the DR23 dye.; Dye decomposition rate was used to optimize TiO2 dose and H2O2 concentration.; The proposed approach can be useful in optimizing advanced photo-oxidation processes.;

Keywords