Multiomics of synaptic junctions reveals altered lipid metabolism and signaling following environmental enrichment
Maximilian Borgmeyer,
Cristina Coman,
Canan Has,
Hans-Frieder Schött,
Tingting Li,
Philipp Westhoff,
Yam F.H. Cheung,
Nils Hoffmann,
PingAn Yuanxiang,
Thomas Behnisch,
Guilherme M. Gomes,
Mael Dumenieu,
Michaela Schweizer,
Michaela Chocholoušková,
Michal Holčapek,
Marina Mikhaylova,
Michael R. Kreutz,
Robert Ahrends
Affiliations
Maximilian Borgmeyer
Leibniz Group ‘Dendritic Organelles and Synaptic Function,’ University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
Cristina Coman
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany; Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria
Canan Has
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
Hans-Frieder Schött
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
Tingting Li
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
Philipp Westhoff
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
Yam F.H. Cheung
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
Nils Hoffmann
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany
PingAn Yuanxiang
RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
Thomas Behnisch
Institutes of Brain Science, State Key Laboratory of Medical Neurobiology and MOE Frontiers Center for Brain Science, Fudan University, Shanghai 200032, China
Guilherme M. Gomes
RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
Mael Dumenieu
RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany
Michaela Schweizer
Morphology and Electron Microscopy, University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany
Michaela Chocholoušková
University of Pardubice, Department of Analytical Chemistry, CZ-532 10 Pardubice, Czech Republic
Michal Holčapek
University of Pardubice, Department of Analytical Chemistry, CZ-532 10 Pardubice, Czech Republic
Marina Mikhaylova
Emmy Noether Group ‘Neuronal Protein Transport,’ University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; AG Optobiology, Institute for Biology, Humboldt Universität zu Berlin, 10115 Berlin, Germany
Michael R. Kreutz
Leibniz Group ‘Dendritic Organelles and Synaptic Function,’ University Medical Center Hamburg-Eppendorf, Center for Molecular Neurobiology, ZMNH, 20251 Hamburg, Germany; RG Neuroplasticity, Leibniz Institute for Neurobiology, 39118 Magdeburg, Germany; German Center for Neurodegenerative Diseases (DZNE), 39120 Magdeburg, Germany; Center for Behavioral Brain Sciences, 30120 Magdeburg, Germany; Corresponding author
Robert Ahrends
Leibniz-Institut für Analytische Wissenschaften-ISAS-e.V., 44227 Dortmund, Germany; Department of Analytical Chemistry, Faculty of Chemistry, University of Vienna, 1090 Wien, Austria; Corresponding author
Summary: Membrane lipids and their metabolism have key functions in neurotransmission. Here we provide a quantitative lipid inventory of mouse and rat synaptic junctions. To this end, we developed a multiomics extraction and analysis workflow to probe the interplay of proteins and lipids in synaptic signal transduction from the same sample. Based on this workflow, we generate hypotheses about novel mechanisms underlying complex changes in synaptic connectivity elicited by environmental stimuli. As a proof of principle, this approach reveals that in mice exposed to an enriched environment, reduced endocannabinoid synthesis and signaling is linked to increased surface expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid receptor (AMPAR) in a subset of Cannabinoid-receptor 1 positive synapses. This mechanism regulates synaptic strength in an input-specific manner. Thus, we establish a compartment-specific multiomics workflow that is suitable to extract information from complex lipid and protein networks involved in synaptic function and plasticity.