Foods (Aug 2022)

Vacuum Impregnation Process Optimization for Tilapia with Biopreservatives at Ice Temperature

  • Yan Liu,
  • Min Li,
  • Zhi Jin,
  • Jing Luo,
  • Biao Ye,
  • Jianwen Ruan

DOI
https://doi.org/10.3390/foods11162458
Journal volume & issue
Vol. 11, no. 16
p. 2458

Abstract

Read online

The vacuum impregnation (VI) process was used to pretreat tilapia fillets with biopreservatives at −2 °C. Response surface methodology (RSM) was utilised to optimize processing conditions, including vacuum pressure (pv), vacuum maintenance time (t1), and atmospheric pressure recovery time (t2), which were determined to be 67.73 kPa, 23.66 min, and 8.87 min, respectively. The anticipated values for the aerobic plate count (APC), total volatile basic nitrogen (TVB-N), and comprehensive score (CS) were 5.17 lg CFU/g, 14.04 mg/100 g, and 0.98, respectively. Verification experiments were conducted, and the experimental results for APC and TVB-N deviated from the predicted values by 0.19% and 0.64%, respectively. After 30 days of storage following VI and atmosphere impregnation (AI) pretreatment, the water-holding capacity (WHC), APC, TVB-N, hardness, and whiteness were determined. On the 30th day, the results for VI pretreatment were 63.38%, 6.27 lg CFU/g, 17.41 mg/100 g, 3.11 N, and 47.73, respectively. Compared with AI pretreatment, WHC, hardness, and whiteness increased by 14.8%, 18.6%, and 6.3%, respectively, whereas APC and TVB-N decreased by 11.3% and 29.6%, respectively. This study demonstrates that when biopreservatives are applied during the pretreatment process, VI technology can be utilised to facilitate their penetration into the interior of tilapia, hence significantly enhancing the effect of ice-temperature preservation.

Keywords