IEEE Access (Jan 2020)
End-to-End Latency Prediction for General-Topology Cut-Through Switching Networks
Abstract
Low latency networking is gaining attention to support futuristic network applications like the Tactile Internet with stringent end-to-end latency requirements. In realizing the vision, cut-through (CT) switching is believed to be a promising solution to significantly reduce the latency of today's store-and-forward switching, by splitting a packet into smaller chunks called flits and forwarding them concurrently through input and output ports of a switch. Nevertheless, the end-to-end latency performance of CT switching has not been well studied in heterogeneous networks, which hinders its adoption to general-topology networks with heterogeneous links. To fill the gap, this paper proposes an end-to-end latency prediction model in a heterogeneous CT switching network, where the major challenge comes from the fact that a packet's end-to-end latency relies on how and when its flits are forwarded at each switch while each flit is forwarded individually. As a result, traditional packet-based queueing models are not instantly applicable, and thus we construct a method to estimate per-hop queueing delay via M/G/c queueing approximation, based on which we predict end-to-end latency of a packet. Our extensive simulation results show that the proposed model achieves 3.98-6.05% 90th-percentile error in end-to-end latency prediction.
Keywords