Using Visual Patient to Show Vital Sign Predictions, a Computer-Based Mixed Quantitative and Qualitative Simulation Study
Amos Malorgio,
David Henckert,
Giovanna Schweiger,
Julia Braun,
Kai Zacharowski,
Florian J. Raimann,
Florian Piekarski,
Patrick Meybohm,
Sebastian Hottenrott,
Corinna Froehlich,
Donat R. Spahn,
Christoph B. Noethiger,
David W. Tscholl,
Tadzio R. Roche
Affiliations
Amos Malorgio
Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
David Henckert
Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
Giovanna Schweiger
Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
Julia Braun
Departments of Epidemiology and Biostatistics, Epidemiology, Biostatistics and Prevention Institute, University of Zurich, 8001 Zurich, Switzerland
Kai Zacharowski
Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, 60323 Frankfurt, Germany
Florian J. Raimann
Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, 60323 Frankfurt, Germany
Florian Piekarski
Department of Anesthesiology, Intensive Care Medicine, and Pain Therapy, University Hospital Frankfurt, Goethe University Frankfurt, 60323 Frankfurt, Germany
Patrick Meybohm
Department of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany
Sebastian Hottenrott
Department of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany
Corinna Froehlich
Department of Anesthesiology, Intensive Care, Emergency, and Pain Medicine, University Hospital Wuerzburg, 97070 Wuerzburg, Germany
Donat R. Spahn
Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
Christoph B. Noethiger
Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
David W. Tscholl
Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
Tadzio R. Roche
Institute of Anesthesiology, University Hospital Zurich, University of Zurich, 8091 Zurich, Switzerland
Background: Machine learning can analyze vast amounts of data and make predictions for events in the future. Our group created machine learning models for vital sign predictions. To transport the information of these predictions without numbers and numerical values and make them easily usable for human caregivers, we aimed to integrate them into the Philips Visual-Patient-avatar, an avatar-based visualization of patient monitoring. Methods: We conducted a computer-based simulation study with 70 participants in 3 European university hospitals. We validated the vital sign prediction visualizations by testing their identification by anesthesiologists and intensivists. Each prediction visualization consisted of a condition (e.g., low blood pressure) and an urgency (a visual indication of the timespan in which the condition is expected to occur). To obtain qualitative user feedback, we also conducted standardized interviews and derived statements that participants later rated in an online survey. Results: The mixed logistic regression model showed 77.9% (95% CI 73.2–82.0%) correct identification of prediction visualizations (i.e., condition and urgency both correctly identified) and 93.8% (95% CI 93.7–93.8%) for conditions only (i.e., without considering urgencies). A total of 49 out of 70 participants completed the online survey. The online survey participants agreed that the prediction visualizations were fun to use (32/49, 65.3%), and that they could imagine working with them in the future (30/49, 61.2%). They also agreed that identifying the urgencies was difficult (32/49, 65.3%). Conclusions: This study found that care providers correctly identified >90% of the conditions (i.e., without considering urgencies). The accuracy of identification decreased when considering urgencies in addition to conditions. Therefore, in future development of the technology, we will focus on either only displaying conditions (without urgencies) or improving the visualizations of urgency to enhance usability for human users.