PLoS ONE (Jan 2024)

Pentatricopeptide repeat 153 (PPR153) restores maize C-type cytoplasmic male sterility in conjunction with RF4.

  • Jennifer S Jaqueth,
  • Bailin Li,
  • Erik Vollbrecht

DOI
https://doi.org/10.1371/journal.pone.0303436
Journal volume & issue
Vol. 19, no. 7
p. e0303436

Abstract

Read online

Maize (Zea mays L.) C-type cytoplasmic male sterility (CMS-C) is a highly used CMS system for maize commercial hybrid seed production. Rf4 is the major dominant restorer gene for CMS-C. Inbreds were recently discovered which contain the restoring Rf4 allele yet are unable to restore fertility due to the lack of an additional gene required for Rf4's restoration. To find this additional gene, QTL mapping and positional cloning were performed using an inbred that contained Rf4 but was incapable of restoring CMS-C. The QTL was mapped to a 738-kb interval on chromosome 2, which contains a Pentatricopeptide Repeat (PPR) gene cluster. Allele content comparisons of the inbreds identified three potential candidate genes responsible for fertility restoration in CMS-C. Complementation via transformation of these three candidate genes showed that PPR153 (Zm00001eb114660) is required for Rf4 to restore fertility to tassels. The PPR153 sequence is present in B73 genome, but it is not capable of restoring CMS-C without Rf4. Analysis using NAM lines revealed that Rf4 requires the presence of PPR153 to restore CMS-C in diverse germplasms. This research uncovers a major CMS-C genetic restoration pathway and can be used for identifying inbreds suitable for maize hybrid production with CMS-C cytoplasm.