Behavioral and Brain Functions (Sep 2011)
Deep resequencing of the voltage-gated potassium channel subunit <it>KCNE3 </it>gene in chronic tinnitus
Abstract
Abstract Membrane-stabilizing drugs have long been used for the treatment of chronic tinnitus, suggesting an underlying disturbance of sensory excitability due to changes in ion conductance. The present study addresses the potassium channel subunit gene KCNE3 as a potential candidate for tinnitus susceptibility. 288 Caucasian outpatients with a diagnosis of chronic tinnitus were systematically screened for mutations in the KCNE3 open reading frame and in the adjacent region by direct sequencing. Allele frequencies were determined for 11 known variants of which two (F66F and R83H) were polymorphic but were not associated with the disorder. No novel variants were identified and only three carriers of R83H were noted. However, owing to a lack of power, our study can neither rule out effects of KCNE3 on the risk for developing chronic tinnitus, nor can it exclude a role in predicting the severity of tinnitus. More extensive investigations are invited, including tests for possible effects of variation in this ion channel protein on the response to treatment.