iScience (May 2023)
phoP maintains the environmental persistence and virulence of pathogenic bacteria in mechanically stressed desiccated droplets
Abstract
Summary: Despite extensive studies on kinematic features of impacting drops, the effect of mechanical stress on desiccated bacteria-laden droplets remains unexplored. In the present study, we unveiled the consequences of the impaction of bacteria-laden droplets on solid surfaces and their subsequent desiccation on the virulence of an enteropathogen Salmonella typhimurium (STM). The methodology elucidated the deformation, cell-cell interactions, adhesion energy, and roughness in bacteria induced by impact velocity and low moisture because of evaporation. Salmonella retrieved from the dried droplets were used to understand fomite-mediated pathogenesis. The impact velocity-induced mechanical stress deteriorated the in vitro viability of Salmonella. Of interest, an uninterrupted bacterial proliferation was observed in macrophages at higher mechanical stress. Wild-type Salmonella under mechanical stress induced the expression of phoP whereas infecting macrophages. The inability of STM ΔphoP to grow in nutrient-rich dried droplets signifies the role of phoP in sensing the mechanical stress and maintaining the virulence of Salmonella.