Forests (Jun 2018)

Seasonal Dynamics of Stem Radial Increment of Pinus taiwanensis Hayata and Its Response to Environmental Factors in the Lushan Mountains, Southeastern China

  • Xinsheng Liu,
  • Yuqin Nie,
  • Feng Wen

DOI
https://doi.org/10.3390/f9070387
Journal volume & issue
Vol. 9, no. 7
p. 387

Abstract

Read online

Seasonal radial-increment records can help to elucidate how tree growth responds to climate seasonality. Such knowledge is critical for understanding the complex growth-climate relationships in subtropical China. We hypothesize that under subtropical monsoon climate characterized by mild winters and hot summers, summer drought constrains stem radial increment, which generally results in growth-limiting factors switching from temperatures in spring and early summer to precipitation in summer and autumn. Here, we monitored intra-annual dynamics of stem radial increment with band dendrometers in a montane stand of Taiwan pine (Pinus taiwanensis Hayata) from Lushan Mountains for two consecutive years (2016–2017). A pronounced bimodal seasonal pattern of stem radial increment was observed in 2016. However, it was less clear in 2017 when late-summer rainfall events occurred in early August. Changing growth-climate relationships were detected throughout the two growing seasons. Stem increments were consistently positively correlated with temperatures before early July, whereas the growth-temperature dependency was gradually weakened and more variable after early July. Conversely, stem increments were significantly correlated with precipitation and soil moisture since early July, indicating that moisture variables were the main factor limiting stem increments in dry period. More precipitation was received in the dry period (July–November) of 2017 as compared with the year 2016, which favoured a wider annual increment in 2017, although growing-season temperature and precipitation was similar between years. Our study suggests a seasonal shift in growth-limiting factors in subtropical forests, which should be explicitly considered in forecasting responses of tree growth to climatic warming.

Keywords