Indonesian Journal of Chemistry (Sep 2022)

A Computational Design of siRNA in SARS-CoV-2 Spike Glycoprotein Gene and Its Binding Capability toward mRNA

  • Arli Aditya Parikesit,
  • Arif Nur Muhammad Ansori,
  • Viol Dhea Kharisma

DOI
https://doi.org/10.22146/ijc.68415
Journal volume & issue
Vol. 22, no. 5
pp. 1163 – 1176

Abstract

Read online

COVID-19 pandemic has no immediate ending in sight, and any significant increasing cases were observed worldwide. Currently, there are only two main strategies for developing COVID-19 drugs that predominantly use a proteomics-based approach, which are drug repurposing and herbal medicine strategies. However, a third strategy has existed, called small interfering RNA or siRNA, which is based on the transcriptomics approach. In the case of SARS-CoV-2 infection, it is expected to perform by silencing the viral gene, which brings the surface glycoprotein (S) gene responsible for SARS-CoV-2 viral attachment to the ACE2 receptor on the human host cell. This third approach applies a molecular simulation method comprising data retrieval, multiple sequence alignment, phylogenetic tree depiction, 2D/3D structure prediction, and RNA-RNA molecular docking. The expected results are the prediction of 2D and 3D structures of both siRNA and mRNA silenced S genes along with a complex as the result of a docking method formed by those silenced genes. An Insilco chemical interaction study was performed in testing siRNA and mRNA complex’s stability with the confirmation result of a stable complex which is expected to be formed before mRNA reaches the ribosome for the translation process. Thus, siRNA from the S gene could be considered a candidate for the COVID-19 therapeutic agent.

Keywords